温度
表示物體冷熱程度的物理量
(重定向自溫度)
温度是表示物体冷热程度的物理量,微观上来讲是物体分子热运动的剧烈程度。温度只能通过物体随温度变化的某些特性来间接测量,而用来量度物体温度数值的标尺叫温标。它规定了温度的读数起点(零点)和测量温度的基本单位。溫度理論上的高極點是「普朗克溫度」,而理論上的低極點則是「絕對零度」。「普朗克溫度」和「絕對零度」都是無法通过有限步骤達到的。目前国际上用得较多的温标有摄氏温标(°C)、华氏温标(°F) 、热力学温标(K)和国际实用温标。


温度是物体内分子间平均动能的一种表现形式。值得注意的是,少數幾個分子甚至是一個分子構成的系統,由於缺乏統計的數量要求,是沒有溫度的意義的。
溫度出現在各種自然科學的領域中,包括物理、地質學、化學、大氣科學及生物學等。像在物理中,二物體的熱平衡是由其溫度而決定,溫度也會造成固體的熱漲冷縮,溫度也是熱力學的重要參數之一。在地質學中,岩漿冷卻後形成的火成岩是岩石的三種來源之一,在化學中,溫度會影響反應速率及化學平衡。大气层中气体的温度是气温(atmospheric temperature),是氣象學常用名词。它直接受日射所影響:日射越多,氣温越高。
溫度也會影響生物體內許多的反應,恒温动物會調節自身體溫,若體溫升高即為發熱,是一種醫學症狀。生物體也會感覺溫度的冷熱,但感受到的溫度受風寒效應影響,因此也會和周圍風速有關。
温度计量 的绝对零度和三相点。绝对零度被定义为0K及−273.15°C。在该温度下,所有经典分子运动都会停止,处于经典模型下的完全静止状态。在量子结构下,在绝对零度下仍然有运动和能量,被称为零點能量。物质处于其基态[2],不包含热能。水的三相点则被定义为273.16K和0.01°C。
而美国广泛使用的华氏温标中,水的冰点为32 °F,沸点为212 °F。
转换[E][12]1 TK 1兆 °C 3×10−6 nm
(伽马射线) CERN质子-核碰撞[E][13] 10 TK 10兆 °C 3×10−7 nm
(伽马射线) 宇宙在大爆炸之后5.391×10−44 s[E] 1.417×1032 K 1.417×1032 °C 1.616×10−26 nm
(普朗克長度) - A 维也纳标准平均海水在一个标准大气压(101.325 kPa)下,根据热力学温度两点的定义。
- B 2500 K值为约数,在热力学温标和摄氏温标之间273.15 K的差值被约为300 K,以避免摄氏度值的假精確问题。
- C 针对一个真正的黑体(钨灯丝并不是)。钨灯丝的辐射比短波要略长,因此看起来更白。
- D 有效光球温度。在热力学温标和摄氏温标之间273.15 K的差值被约为273 K,以避免摄氏度值的假精確问题。
- E 在热力学温标和摄氏温标之间273.15 K的差值已经忽略不计。
- F 针对一个真正的黑体(等离子体并不是)。
温度测量 编辑
不同温度的黑体辐射频谱。随着温度下降,频谱峰值波长增加 由于温度会对体积、密度、声速、阻抗等物理量产生影响,因此可以通过测量这些物理量数值的变化来测量温度。目前温度测量的方法有数十种,按照测量原理可以分为以下几类:
- 膨胀测温法,是采用几何量(体积、长度)作为温度的标志。如水银温度计的测量范围大约是-30~300°C,酒精温度计的测量范围大约是-115~110℃,
- 电学测温法,是采用某些随温度变化的电阻等电学量作为温度的标志。电阻温度计多用于低於600℃的場合,热电偶温度计测量范围一般在1600℃以下,此外还有半导体热敏电阻温度计。
- 磁学测温法,是根据顺磁物质的磁化率与温度的关系来测量温度,常用在超低温(小于1K)测量中。
- 声学测温法,采用声速作为温度标志(声速的平方与温度成正比)。主要用于低温下热力学温度的测定。
- 频率测温法,根据物体固有频率的变化来测量温度。石英晶体温度计的分辨率可达万分之一摄氏度。
- 光学测温法,是根据黑体辐射来测量温度。如紅外線溫度計[14]。
- 密度测温法,如伽利略溫度計。
参考资料 编辑
- ^ The kelvin in the SI Brochure 互联网档案馆的存檔,存档日期2007-09-26.
- ^ Absolute Zero. Calphad.com. [2010-09-16]. (原始内容存档于2018-10-09).
- ^ The cited emission wavelengths are for black bodies in equilibrium. CODATA 2006 recommended value of 7685(51)×10−3 m K used for Wien displacement law constant b. 2.897
- ^ World record in low temperatures. [2009-05-05]. (原始内容存档于2009-06-18).
- ^ 2003年,麻省理工学院的研究者在实验中得到了玻色–爱因斯坦凝聚的最低温度450 ±80 pK。参考资料:Cooling Bose–Einstein Condensates Below 500 Picokelvin, A. E. Leanhardt et al., Science 301, 12 Sept. 2003, p. 1515. It's noteworthy that this record's peak emittance black-body wavelength of 6,400 kilometers is roughly the radius of Earth.
- ^ 在103.456 MHz频率下,峰值辐射波长为2.89777 m。
- ^ 于2002年测量,有±3凯尔文的误差。1989年的测量结果 (页面存档备份,存于互联网档案馆)为5,777.0±2.5 K。参考资料:Overview of the Sun (页面存档备份,存于互联网档案馆) (Chapter 1 lecture notes on Solar Physics by Division of Theoretical Physics, Dept. of Physical Sciences, University of Helsinki).
- ^ 350 MK的数值是指氢弹的最高燃烧温度。原子弹的最高温度大概在50到100 MK。参考资料:Nuclear Weapons Frequently Asked Questions, 3.2.5 Matter At High Temperatures. Link to relevant Web page. All referenced data was compiled from publicly available sources.
- ^ In fact, the iron and manganese ions in the plasma averaged 3.58±0.41 GK (309±35 keV) for 3 ns (ns 112 through 115). ([//web.archive.org/web/20120419065825/http://prl.aps.org/abstract/PRL/v96/i7/e075003 页面存档备份,存于互联网档案馆) (页面存档备份,存于互联网档案馆) (页面存档备份,存于互联网档案馆) Ion Viscous Heating in a Magnetohydrodynamically Unstable Z Pinch at Over ×109 Kelvin] ( 2页面存档备份,存于互联网档案馆), M. G. Haines et al., Physical Review Letters 96 (2006) 075003. Link to Sandia's news release. 互联网档案馆的存檔,存档日期2010-05-30.
- ^ 大质量(>8–11倍太阳质量)恒星核心温度离开赫羅圖上主序带进入燃烧硅-28的α过程(持续1天),依照下列顺序演变为重核元素:硫–32 →氩–36 →钙–40 →钛–44 →铬–48 →铁–52 →镍–56。在完成该序带后数分钟内,该恒星爆炸成为II型超新星。参考资料:Stellar Evolution: The Life and Death of Our Luminous Neighbors (by Arthur Holland and Mark Williams of the University of Michigan). Link to Web site (页面存档备份,存于互联网档案馆).更多资料可以参见这里 互联网档案馆的存檔,存档日期2013-04-11.,以及这里 互联网档案馆的存檔,存档日期2011-08-14.,另外还有来自NASA的有关星体的准确论述 互联网档案馆的存檔,存档日期2010-10-24.。
- ^ Torus Formation in Neutron Star Mergers and Well-Localized Short Gamma-Ray Bursts (页面存档备份,存于互联网档案馆), R. Oechslin et al. of Max Planck Institute for Astrophysics. (页面存档备份,存于互联网档案馆), arXiv:astro-ph/0507099 v2, 22 Feb. 2006. An html summary (页面存档备份,存于互联网档案馆).
- ^ Results of research by Stefan Bathe using the PHENIX (页面存档备份,存于互联网档案馆) detector on the Relativistic Heavy Ion Collider (页面存档备份,存于互联网档案馆) at Brookhaven National Laboratory (页面存档备份,存于互联网档案馆) in Upton, New York, U.S.A. Bathe has studied gold-gold, deuteron-gold, and proton-proton collisions to test the theory of quantum chromodynamics, the theory of the strong force that holds atomic nuclei together. Link to news release. (页面存档备份,存于互联网档案馆)
- ^ How do physicists study particles? 互联网档案馆的存檔,存档日期2007-10-11. by CERN (页面存档备份,存于互联网档案馆).
- ^ 紅外線溫度儀量測原理. [2016-02-04]. (原始内容存档于2020-07-24).
外部連結 编辑
维基共享资源中相关的多媒体资源:温度
查看维基词典中的词条「温度」。
(伽马射线)
(伽马射线)
(普朗克長度)

由于温度会对体积、密度、声速、阻抗等物理量产生影响,因此可以通过测量这些物理量数值的变化来测量温度。目前温度测量的方法有数十种,按照测量原理可以分为以下几类:
- 膨胀测温法,是采用几何量(体积、长度)作为温度的标志。如水银温度计的测量范围大约是-30~300°C,酒精温度计的测量范围大约是-115~110℃,
- 电学测温法,是采用某些随温度变化的电阻等电学量作为温度的标志。电阻温度计多用于低於600℃的場合,热电偶温度计测量范围一般在1600℃以下,此外还有半导体热敏电阻温度计。
- 磁学测温法,是根据顺磁物质的磁化率与温度的关系来测量温度,常用在超低温(小于1K)测量中。
- 声学测温法,采用声速作为温度标志(声速的平方与温度成正比)。主要用于低温下热力学温度的测定。
- 频率测温法,根据物体固有频率的变化来测量温度。石英晶体温度计的分辨率可达万分之一摄氏度。
- 光学测温法,是根据黑体辐射来测量温度。如紅外線溫度計[14]。
- 密度测温法,如伽利略溫度計。
- ^ The kelvin in the SI Brochure 互联网档案馆的存檔,存档日期2007-09-26.
- ^ Absolute Zero. Calphad.com. [2010-09-16]. (原始内容存档于2018-10-09).
- ^ The cited emission wavelengths are for black bodies in equilibrium. CODATA 2006 recommended value of 7685(51)×10−3 m K used for Wien displacement law constant b. 2.897
- ^ World record in low temperatures. [2009-05-05]. (原始内容存档于2009-06-18).
- ^ 2003年,麻省理工学院的研究者在实验中得到了玻色–爱因斯坦凝聚的最低温度450 ±80 pK。参考资料:Cooling Bose–Einstein Condensates Below 500 Picokelvin, A. E. Leanhardt et al., Science 301, 12 Sept. 2003, p. 1515. It's noteworthy that this record's peak emittance black-body wavelength of 6,400 kilometers is roughly the radius of Earth.
- ^ 在103.456 MHz频率下,峰值辐射波长为2.89777 m。
- ^ 于2002年测量,有±3凯尔文的误差。1989年的测量结果 (页面存档备份,存于互联网档案馆)为5,777.0±2.5 K。参考资料:Overview of the Sun (页面存档备份,存于互联网档案馆) (Chapter 1 lecture notes on Solar Physics by Division of Theoretical Physics, Dept. of Physical Sciences, University of Helsinki).
- ^ 350 MK的数值是指氢弹的最高燃烧温度。原子弹的最高温度大概在50到100 MK。参考资料:Nuclear Weapons Frequently Asked Questions, 3.2.5 Matter At High Temperatures. Link to relevant Web page. All referenced data was compiled from publicly available sources.
- ^ In fact, the iron and manganese ions in the plasma averaged 3.58±0.41 GK (309±35 keV) for 3 ns (ns 112 through 115). ([//web.archive.org/web/20120419065825/http://prl.aps.org/abstract/PRL/v96/i7/e075003 页面存档备份,存于互联网档案馆) (页面存档备份,存于互联网档案馆) (页面存档备份,存于互联网档案馆) Ion Viscous Heating in a Magnetohydrodynamically Unstable Z Pinch at Over ×109 Kelvin] ( 2页面存档备份,存于互联网档案馆), M. G. Haines et al., Physical Review Letters 96 (2006) 075003. Link to Sandia's news release. 互联网档案馆的存檔,存档日期2010-05-30.
- ^ 大质量(>8–11倍太阳质量)恒星核心温度离开赫羅圖上主序带进入燃烧硅-28的α过程(持续1天),依照下列顺序演变为重核元素:硫–32 →氩–36 →钙–40 →钛–44 →铬–48 →铁–52 →镍–56。在完成该序带后数分钟内,该恒星爆炸成为II型超新星。参考资料:Stellar Evolution: The Life and Death of Our Luminous Neighbors (by Arthur Holland and Mark Williams of the University of Michigan). Link to Web site (页面存档备份,存于互联网档案馆).更多资料可以参见这里 互联网档案馆的存檔,存档日期2013-04-11.,以及这里 互联网档案馆的存檔,存档日期2011-08-14.,另外还有来自NASA的有关星体的准确论述 互联网档案馆的存檔,存档日期2010-10-24.。
- ^ Torus Formation in Neutron Star Mergers and Well-Localized Short Gamma-Ray Bursts (页面存档备份,存于互联网档案馆), R. Oechslin et al. of Max Planck Institute for Astrophysics. (页面存档备份,存于互联网档案馆), arXiv:astro-ph/0507099 v2, 22 Feb. 2006. An html summary (页面存档备份,存于互联网档案馆).
- ^ Results of research by Stefan Bathe using the PHENIX (页面存档备份,存于互联网档案馆) detector on the Relativistic Heavy Ion Collider (页面存档备份,存于互联网档案馆) at Brookhaven National Laboratory (页面存档备份,存于互联网档案馆) in Upton, New York, U.S.A. Bathe has studied gold-gold, deuteron-gold, and proton-proton collisions to test the theory of quantum chromodynamics, the theory of the strong force that holds atomic nuclei together. Link to news release. (页面存档备份,存于互联网档案馆)
- ^ How do physicists study particles? 互联网档案馆的存檔,存档日期2007-10-11. by CERN (页面存档备份,存于互联网档案馆).
- ^ 紅外線溫度儀量測原理. [2016-02-04]. (原始内容存档于2020-07-24).
维基共享资源中相关的多媒体资源:温度 |
查看维基词典中的词条「温度」。 |